Calendar

Oct
22
ven
Ignasi Pérez-Ràfols / Santi Roca-Fàbrega – Lyman alpha/disk dwarf stars @ B18N, Salle Univers
Oct 22 @ 11 h 30 min – 13 h 00 min
Séminaire

Title: The bimodal A(Li) distribution of Milky Way’s thin disk dwarf stars and the Galactic scale events

Speaker: Santi Roca-Fàbrega (Universidad Complutense de Madrid)

Abstract: The lithium abundance, A(Li), in stellar atmospheres suffers from various enhancement and depletion processes during the star’s lifetime. While several studies have demonstrated that these processes are linked to the physics of stellar formation and evolution, the role that Galactic-scale events play in the galactic A(Li) evolution is not yet well understood. In this talk I will show that the observed A(Li) bi-modal distribution, in particular in the FGK-dwarf population of field stars, is not a statistical artefact but it is a consequence of a particular Milky Way star formation history profile combined with the stellar evolution’s 7Lii depletion mechanisms. I will show that A(Li) evolution can be used as an additional proxy for the star formation history of our Galaxy.

——

Title: Cosmology (& astrophysics) with the Lyman alpha forest
Speaker: Ignasi Pérez-Ràfols (Sorbonne Université, Laboratoire de Physique Nucléaire et de Hautes Energies)

Abstract: The acceleration of the expansion rate of the Universe is yet to be explained. Several models, including LCDM, try to explain this acceleration. LCDM bases its explanation on a mysterious dark energy, adding up to ~75% of the total energy density of the Universe. Other models present modified theories of gravity to explain this effect. But which one is correct? The expansion history of the Universe is a great observable to discriminate between these models. I will talk about measurements of this expansion history at redshift greater than 2 using BAO with the Lyman alpha forest. I will talk about the most recent results from eBOSS, and also from the next generation of surveys that is currently starting: DESI and WEAVE. I will talk about how improving our knowledge of the Lyman alpha forest can help us not only with answering our cosmological questions, but also with our understanding on galaxy evolution.

Nov
9
mar
Thomas Nony – How do stars get their mass? Understanding the origin of the IMF from the mass distribution of cores @ B18N, Salle Renaudot (216)
Nov 9 @ 11 h 00 min – 12 h 00 min
Séminaire

Title: How do stars get their mass? Understanding the origin of the IMF from the mass distribution of cores
Speaker: Dr. Thomas Nony (UNAM)

Abstract:

The origin of stellar masses is one of the most central open issues in astrophysics. In this talk, I will introduce the ALMA-IMF Large Program, whose goal is to determine if and how the origin of the Initial Mass Function (IMF) depends on the cloud characteristics. Its first results, obtained from a large sample of cores without significant bias, suggest that mass distribution of cores (CMFs) in high-mass proto-clusters generally do not follow the canonical IMF.
I will also present our recent detailed studies of the W43-MM2&MM3 molecular complex. We propose that top-heavy CMFs are associated with spatially and temporally limited bursts of star formation. In addition, the identification of outflows in CO(2-1) enables us to assess that a very large fraction of the excess high-mass cores are protostellar. This confirms that the high-mass prestellar core phase, if it exists, is evanescent. Interestingly, protostellar outflows in W43 have also shown clear evidence of episodicity, bringing new elements toward the understanding of episodic accretion.
Nov
19
ven
Laetitia Rodet – Shaping Extrasolar Systems with Giant Planets @ Zoom
Nov 19 @ 14 h 00 min – 15 h 00 min
Séminaire

Title: Shaping Extrasolar Systems with Giant Planets
Speaker: Laetitia Rodet (Department of Astronomy, Cornell University )

Abstract:

In the last decades, exoplanet surveys have revealed the presence of giant planets (Jupiter-sized or larger) orbiting at least 5 % of Sun-like stars. This percentage will likely increase in the near future, in particular with the coming data releases of the Gaia mission. Due to their mass, giant planets have a significant impact on the dynamics of the entire planetary system. First insights on their architecture show larger eccentricities and inclinations than the smaller planets, and orbital periods ranging from hours (hot Jupiters) to years (cold Jupiters), and even thousands of years.

In this talk, I will present how giant planets shape the architecture of extrasolar systems, in particular the orbits of fellow giant planet companions, inner super Earths, moons and planetesimals. I will compare analytical expectations, N-body simulations, and actual observations, focusing especially on directly imaged-systems. Giant planets can directly perturb their environment through secular interactions, scattering or resonances. Moreover, cold Jupiters are sensitive to the close flybys of neighboring stars. The occasional kicks that those flybys induce can significantly change a giant planet orbit, which will then impact the rest of the planetary system. This phenomenon could be linked to the formation of hot Jupiters, the misalignment of inner super Earths or the asymmetries in debris disks.

Déc
3
ven
Jaques Kluska – Disks around evolved binaries: do they form second-generation planets? @ B18N, Salle Univers
Déc 3 @ 11 h 00 min – 12 h 00 min
Séminaire

Title: Disks around evolved binaries: do they form second-generation planets?
Speaker: Jaques Kluska (KU Leuven)

Abstract:

Most of the planets were formed around young stars. But can they also form around dying stars? 
The origin of the diversity and complexity of the detected exoplanetary systems stems from how they form in protoplanetary disks. These disks are intensively studied around young stars thanks to the high-angular resolution provided by recent instruments (VLT, ALMA). However, similar disks are also found around evolved stars, namely post-AGB binaries, raising the exciting but yet unanswered possibility of second-generation planet formation. Do planets form around evolved stars? While this question has only been tackled theoretically in the past, we have now the possibility to probe such second-generation planet formation by observations using high angular resolution instruments.
 
In this talk I will show the latest results of an extensive high angular resolution observing campaign of these disks using infrared interferometry at the VLTI (PIONIER, GRAVITY, MATISSE). I will show that these disks share many similarities with protoplanetary disks around young stars.
These disks are, therefore, a unique laboratory to test planet formation processes in a parameter space that is unmet around young stars (e.g., short disk lifetime, high stellar luminosity, lack of influence from the environment).
Whether or not planet formation is possible at the end of stellar evolution, studying it in a very different parameter space will provide an unprecedented test to current planet formation theories. 
Déc
14
mar
Ileyk el Mellah – Circumbinary envelope and wind mass transfer: from cool evolved stars to high-mass X-ray binaries @ B18N, Salle Univers
Déc 14 @ 11 h 00 min – 12 h 00 min
Séminaire

Title: Circumbinary envelope and wind mass transfer: from cool evolved stars to high-mass X-ray binaries
Speaker: Ileyk el Mellah (IPAG)

Abstract:

Stellar multiplicity has been recognized as a ubiquitous feature: stars seldom live an effectively single life. In the late stellar evolutionary stages, mass loss plays a major role while interaction with an orbiting companion can leave remarkable imprints in the circumbinary envelope and influence the final fate of the system. In binaries, whether the outflows are line-driven from a blue supergiant or dust-driven from a red giant, the flow morphology shares common features which shed light on the launching mechanism. High spatial and spectral resolution instruments have identified arcs and spirals around cool evolved stars which suggest the presence of underlying (sub-)stellar companions. On the other hand, in high-mass X-ray binaries, time-resolved spectroscopy over multiple orbits reveals how the clumpy wind is disrupted and accreted by the compact object.

In this talk, I will present simulations of mass transfer mediated by dust and line-driven winds in binaries. With the mesh-based radiative magneto-hydrodynamics code MPI-AMRVAC, we designed a versatile 3D setup suitable to capture the wind dynamics. In high mass X-ray binaries, we can follow the wind over several orders of magnitude as it is accreted onto the compact object. I will show how the compact object can also be used as an orbiting X-ray backlight whose shimmering betrays the structure of the foreground absorbing material. Around cool evolved stars, these simulations are extended up to several 10 orbital separations at an affordable computational cost, thanks to adaptive mesh refinement. For different dust chemical content, they can reproduce the morpho-kinematics properties we extracted from ALMA’s multi-channel molecular line emission maps. In both cases, I will describe how mass transfer redistributes angular momentum and can lead to orbital inspiral.

Mar
16
mer
Sylvie Vauclair – The fate of planetary systems @ B18N, Salle Univers
Mar 16 @ 11 h 00 min – 12 h 00 min
Séminaire

The seminar will be in French with the slides shown in English.

Title: La fin des systèmes planétaires/The fate of planetary systems

Speaker: Sylvie Vauclair (IRAP)

Abstract:

On étudie beaucoup la formation des systèmes planétaires, qu’en est-il de leur disparition ? L’étude des naines blanches apporte des informations importantes sur ce sujet. Après les épisodes d’expansion spectaculaire des étoiles dans les phases ultimes de leur existence, que reste-t-il de leurs systèmes planétaires ? Des disques de débris ont été découverts autour de nombreuses naines blanches. Des petits corps, de type astéroïde, encore présents dans le disque, sont épisodiquement détruits par effet de marée avant de tomber dans l’étoile. L’atmosphère est ainsi polluée en éléments lourds, dans des proportions montrant qu’il s’agit bien de restes d’anciens systèmes planétaires. Les simulations numériques du processus d’accrétion sur la naine blanche permettent d’évaluer le taux d’accrétion et d’estimer la masse des corps désintégrés. De récentes observations en rayon x confortent ce scénario.

 

Mar
18
ven
Etienne Bachelet – Détection d’exoplanètes froides dans toute la Voie Lactée avec les microlentilles gravitationnelles
Mar 18 @ 11 h 00 min – 12 h 00 min
Séminaire

Title: Détection d’exoplanètes froides dans toute la Voie Lactée avec les microlentilles gravitationnelles
Speaker: Etienne Bachelet

Abstract:

Depuis une vingtaine d’années, des dizaines d’exoplanètes « froides » ont été détectées à plusieurs kilo-parsecs de la Terre grâce aux microlentilles gravitationnelles. La grande majorité ont été observées en direction du bulbe galactique, ou la densité d’étoiles est la plus grande. Mais de nouveau grands relevés du ciel, tel que LSST, ouvrent la voie à la détection de microlentilles dans toute la Voie Lactée. En parallèle, la mission de la NASA Roman promet la détection de 1500 planètes à l’horizon 2035. Je présenterai le potentiel et les défis liés à ces nouvelles missions ainsi que les différentes synergies observationnelles.

Avr
5
mar
Victor Reville – Unraveling stellar atmospheres and winds with Parker Solar Probe and Solar Orbiter @ B18N, Salle Univers
Avr 5 @ 11 h 00 min – 12 h 00 min
Séminaire

Title: Unraveling stellar atmospheres and winds with Parker Solar Probe and Solar Orbiter
Speaker: Victor Reville (IRAP)

Abstract:

Solar-like stars, and particularly the Sun, exhibit hot coronae that can reach temperatures of several million Kelvin, consequently driving expanding winds. Mechanisms for the heating and the acceleration of these winds are, however, still largely debated, with two main theories: dissipation through a turbulent cascade or direct heating through reconnection in the solar corona. Two novel heliospheric missions, Parker Solar Probe and Solar Orbiter, have been sent closer than ever to the Sun to settle the question.
 
In this talk, I will review and discuss 3D MHD models of the solar corona based on Alfvén wave turbulence and compare their results with the data of the two probes. I will also show the role of the reconnection in creating dynamic signatures in the solar wind. Understanding the dynamics of the corona is also crucial to anticipate solar-terrestrial relations and I will show recent efforts undertaken at IRAP for space weather modeling.
 
Finally, zooming out to a more stellar context, I will discuss the important constraints that need to be taken into account to transpose corona and wind models to other solar-like stars and their planetary systems.

 

Avr
12
mar
Michel Blanc – Horizon 2061 perspectives for the future exploration of Giant Planets systems @ B18N, Salle Univers
Avr 12 @ 11 h 00 min – 12 h 00 min
Séminaire

Speaker : Michel Blanc (astronome émérite à l’IRAP, directeur de l’Observatoire Midi-Pyrénées)

Title: Horizon 2061 perspectives for the future exploration of Giant Planets systems

Abstract : Giant Planet Systems offer four different examples of “small planetary systems” which are accessible both to in situ exploration and telescope observations inside our own planetary system. As described in the recently released report of the « Planetary Exploration, Horizon 2061 » foresight exercise ( https://horizon2061.cnrs.fr/publications/ ), exploration of these systems can address in depth six key science questions about planetary systems: exploring the diversity of their objects and the diversity of their architectures, understanding their formation scenarios and how they work, where to search for habitable worlds, and finally how to detect life. I will discuss how future space missions can address these questions in the decades to come. Finally, I will describe our current and future work on the coupling of giant planets atmospheres with their moons and magnetospheres, its current focus on the Jupiter System with Juno observations, and our plans to extend them to other giant planet systems and possibly to planet/moon/disk interactions.

Mai
31
mar
Anthony Boccaletti – Observations of exoplanetary systems at high angular resolution and high contrast: from ground to space @ B18N, Salle Univers
Mai 31 @ 11 h 00 min – 12 h 00 min
Séminaire

Speaker : Anthony Boccaletti (LESIA)

Title: Observations of exoplanetary systems at high angular resolution and high contrast: from ground to space

The two-last decade advances in exoplanetary science have been strongly connected to technological breakthroughs, especially in high contrast imaging. The past few years have witnessed a revolution in the field with the implementation of specialized ground-based instruments, like SPHERE at the VLT, equipped with extreme adaptive optics, stellar coronagraphs and dedicated post-processing algorithms. A new revolution is now coming with the James Webb Space Telescope being commissioned, expecting the first science programs to start in a few months.

I’ll briefly summarize the main results obtained with SPHERE in the first years of operations in what concern exoplanets and exoplanetary systems at large. I will focus on two systems which I studied in more details from a disk science point of view, AU Microscopii and AB Aurigae. To push even further the performances of SPHERE we are considering an upgrade of the AO system to explore the very close-in regions around bright stars and to access faint and red targets yet unattainable in star-forming regions, reinforcing the synergy with ALMA. I’ll discuss the main modifications of the instrument and the science cases associated with that upgrade. Finally, I’ll present the coronagraphic system of the Webb’s Mid IR instrument, MIRI, and the expected performance in terms of contrast and the complementarity with SPHERE.